
Preparation for EMC 2024

Fourth Training Test for Junior Category

Solutions

Problem 1. In acute-angled △ABC with AB < BC, points M , N are
the midpoints of sides AB, AC respectively. Let D and E be two points
on the segment BN such that CD = 2ME and BE < ED. Prove that
∠NEM = ∠CDN .

Solution. Let F on BN be such that BD = 2NE. Since BE < ED,
BC = 2NM , and ∠CBD = ∠MNF , we have hence △BCD ∼ △NMF ,
hence MF = 1

2CD = ME and

∠CDN = 180◦ − ∠BDC = 180◦ − ∠NFM = ∠MFB.

Since △MEF is isosceles we conclude ∠CDN = ∠MFB = ∠NEM .



Problem 2. Find all positive integers n for which

2n! − 1

2n − 1

is a perfect square.

Solution. For n = 1 and n = 2 we have

21! − 1

21 − 1
=

22! − 1

22 − 1
= 1,

which is a perfect square. Similarly for n = 3 we have

23! − 1

23 − 1
=

26 − 1

23 − 1
= 23 + 1 = 9 = 32.

For n ≥ 4 we have 2 | n!
2 and n | n!

2 , hence 2
n!
2 is a perfect square and

2n − 1 | 2
n!
2 − 1. On the other hand 2

n!
2 − 1, and 2

n!
2 + 1 are odd, hence

coprime numbers. This means that 2
n!
2 +1, (as well as 2

n!
2 ) must be perfect

squares, which is impossible.
We conclude that the claim is true only for n ∈ {1, 2, 3}.



Problem 3. Let n ≥ 3 be an integer. In a square of size n×n
we place the shapes on the picture on the right, such that the
unit squares coincide. On each unit square it is allowed to
overlap at most two figures, rotations and flips are allowed,
and no figure can exit the borders of the square. For each n find the least
number of unit squares that must be left uncovered (a square is covered if
at least one figure covers it).

Solution. For n = 3 every figure must cover the middle square, hence we
can place at most two figures covering at most 2 · 4 − 1 = 7 unit squares
shown on the left picture. This gives us the minimum of 2 uncovered unit
squares. Similarly for n = 4 the minimum is 1 shown on the middle picture.
If we suppose that all unit squares can be covered, than we have at least one
figure covering each corner. However these figures cover two of the middle
squares and one more edge square, hence covering 12 squares in total. After
this we cannot add a figure that doesn’t cower a middle square for the third
time, hence leaving 4 uncovered unit squares (an example can be seen on
the right picture).

For n = 5 again we have a solution with only one uncovered unit square (on
the left). If we suppose that we can cover all unit squares again we have
four figures for each corner. In the right picture with red we have 4 unit
squares such that each must cover one of them, and in green we have 9 unit
squares such that no two can be covered by the same figure. The red once
imply that at most 8 figures can be put in the square, and the green ones
that at least 9 figures are needed to cover all squares. Hence, at least one
unit square must be left uncovered.

On the next picture we give complete coverings of 2 × 3, 2 × 5, 2 × 7,
and 7× 7 boards. Since every square with side n ≥ 6 can be split into such
boards we can completely cover a square with side n ≥ 6.



We conclude that for n = 3 the minimum number of uncovered squares is
2, for n = 4 and n = 5 it is 1, and for every n ≥ 6 this number is 0.



Problem 4. Let a ≥ b ≥ c ≥ d be positive real numbers. Prove that

b3

a
+

c3

b
+

d3

c
+

a3

d
+ 3 (ab+ bc+ cd+ da) ≥ 4

(
a2 + b2 + c2 + d2

)
.

When does the equality hold?

Solution. Since (b−a)3

a = b3

a −3b2+3ab−a2, the given inequality is equivalent
to

(b− a)3

a
+

(c− b)3

b
+

(d− c)3

c
+

(a− d)3

d
≥ 0.

However by the given conditions a− d ≥ 0 and b− a, c− b, d− c ≤ 0, hence
it is enough to prove that (a− d)3 ≥ (a− b)3 + (b− c)3 + (c− d)3. This is
true since a− d = (a− b) + (b− c) + (c− d).
The equality can hold only when a = b = c = d.


