Preparation for EMC 2024

Fourth Training Test for Senior Category

9th December 2024

Problem 1. On an infinite chessboard consisting of unit squares (x, y) with $x, y \ge 0$ two players play the following game: initially a king is positioned somewhere on the board, but not on (0, 0), and they alternatively move it either down or left or down-left. The player Who loses is the one who moves the king into the (0, 0) square. Find the initial position of the king for which the first player wins.

Problem 2. Let *n* be a positive integer. What is the largest number of elements that one can choose from the set $A = \{1, 2, ..., 2n\}$ such that the sum of any two chosen numbers is composite?

Problem 3. Prove that for every positive integer n there exists an n-digit number divisible by 5^n , all of whose digits are odd.

Problem 4. Determine all functions $f : \{1, 2, 3, ...\} \rightarrow \{1, 2, 3, ...\}$ which satisfy the property that for all positive integers a and b, there exists a nondegenerate triangle with sides of lengths

$$a, f(b)$$
 and $f(b + f(a) - 1)$.

(A triangle is non-degenerate if its vertices are not collinear.)

Allotted time: 4 hours.