Preparation for EMC 2024

Second Training Test for Junior Category

Solutions

Problem 1. Two players play a game where they take turns to make a
move and which always finishes with the victory of one of the players. The
game is also designed so that it ends in at most n steps, for some fixed
positive integer n. Prove that either the first or the second player has a
Winning strategy.

Solution. We prove the statement by induction on the number n of steps
after which the game certainly finishes. Let us call the two players A and
B and we assume that A makes the first move.

If n = 1, then certainly one of the players has a winning strategy. Indeed,
only player A will get to move. If any of his moves leads to him winning,
then a winning strategy for player A is to make this move. If every one of
his moves leads to a win for B, then a Winning strategy for B is to let A
move arbitrarily.

Assume now that the result holds for some n > 1. We shall prove that
it also holds for n 4 1.

After any move by player A we are left with a game that certainly ends
in at most n steps. Hence by the inductive hypothesis one of the two players
has a winning strategy. If any move by player A leaves a position in which
player A has a winning strategy, then making this move and then following
that winning strategy is a winning strategy for player A. Otherwise, it must
be that whatever first move player A makes, we are left in a situation where
player B has a winning strategy. Then a winning strategy for player B is to
let A make his first move arbitrarily and then follow the resulting winning
strategy. This completes our induction step. O

Remark. The same argument which we used in the induction step applies
to prove the more general result where we only require that the game finishes
in a finite number of steps, not necessarily bounded by a fixed n.



Problem 2. Let ABC be an acute-angled triangle with circumcircle I' and
orthocenter H. Let K be a point of " on the other side of BC' from A.
Let L be the reflection of K in the line AB, and let M be the reflection of
K in the line BC. Let E be the second point of intersection of I' with the

circumcircle of triangle BLM. Show that the lines KH, EM and BC are
concurrent.

Solution. Let H4 and H¢ be the reflections of H across BC' and BA,
respectively; it is well-known that the points H4 and Hg lieon I'. Let E’ be
the second intersection of line H, M with I'. By construction, lines £’ M and
HK concur on BC, and our goal is to show that B, L, E’, M are concyclic.

First, we claim that L, HC, and E’ are collinear. Due to the reflections,

ZLHoB =—-/ZKHB =/MHsB =/E'"HsB =/F'HcB,

(the notation ZXY Z stands for a directed angle) which proves the claim.
Then

LLE'M = Z/HocE'Hy = ZHcBHy4 = 2/ABC

(the last equality following from reflections; verify it yourself) and

ZLBM = /LBK + /KBM =2/ABK +2/KBC =2/ABC,

so B,L,E’, M are concyclic. Hence F = E’ and we are done. O



Problem 3. Prove that every positive integer n is a sum of one or more
numbers of the form 2"3°, where r and s are non-negative integers and no
summand divides another (for example, 23 =9 + 8 + 6).

Solution. We argue by contradiction. Suppose n is the smallest positive
integer without a proper representation. Clearly, n > 7. Moreover, n is odd.
Indeed, if n were even, then 5 can be properly represented; by multiplying
each of the powers in a proper representation of 5 by 2, we get a proper
representation of n.

Let k be such that 3F < n < 3¥1. If n = 3F a proper representation

: T3k . . .
is clear. If n > 3%, then 2 23 is an integer which can be represented as a

desired sum. Multiply each term in a proper representation of ”_23k by 2
and add a summand 3*. We claim we get a proper representation for n.
Clearly no summand coming from the used proper representation of %
can divide another such summand. Also since all such summands are even
they cannot divide the summand 3*. Since ”_23k is less than 3%, no summand

coming from the representation of ”Egk can be divisible by 3*. 0



Problem 4. If 0 < a < b < ¢ < d, prove that

albecld® > brcbda’ .

Solution. We shall use the following lemma.

Lemma. If a real function f is convex on the interval I and x,y,z € I,
xz <y <z then

(y—2)f(z) + (z =) f(y) + (£ —y) f(2) 0.

Proof. The inequality is obvious for x = y = z. If x < z, then there exist
non-negative p,r such that p+r = 1 and y = px + rz. Then by Jensen’s
inequality f(px+rz) < pf(x)+rf(z), which is equivalent to the statement
of the lemma. ©

By applying the lemma to the convex function —Iinxz we obtain x¥y*z% >
y*2¥a* for any 0 < x < y < z. Multiplying the inequalities a®b¢c® > b%cba®
and a®c?d® > ¢*d®a® we get the desired inequality. O

Remark. Similarly, for 0 < a1 < a9 < --- < a, it holds that

az asz . a1 a_az _Gn
a1”aqy a,' = ay' asg ai™ .



