Preparation for EMC 2024

Second Training Test for Junior Category

Solutions

Problem 1. Two players play a game where they take turns to make a move and which always finishes with the victory of one of the players. The game is also designed so that it ends in at most n steps, for some fixed positive integer n. Prove that either the first or the second player has a Winning strategy.

Solution. We prove the statement by induction on the number n of steps after which the game certainly finishes. Let us call the two players A and B and we assume that A makes the first move.

If n = 1, then certainly one of the players has a winning strategy. Indeed, only player A will get to move. If any of his moves leads to him winning, then a winning strategy for player A is to make this move. If every one of his moves leads to a win for B, then a Winning strategy for B is to let A move arbitrarily.

Assume now that the result holds for some $n \ge 1$. We shall prove that it also holds for n + 1.

After any move by player A we are left with a game that certainly ends in at most n steps. Hence by the inductive hypothesis one of the two players has a winning strategy. If any move by player A leaves a position in which player A has a winning strategy, then making this move and then following that winning strategy is a winning strategy for player A. Otherwise, it must be that whatever first move player A makes, we are left in a situation where player B has a winning strategy. Then a winning strategy for player B is to let A make his first move arbitrarily and then follow the resulting winning strategy. This completes our induction step.

Remark. The same argument which we used in the induction step applies to prove the more general result where we only require that the game finishes in a finite number of steps, not necessarily bounded by a fixed n.

Problem 2. Let ABC be an acute-angled triangle with circumcircle Γ and orthocenter H. Let K be a point of Γ on the other side of BC from A. Let L be the reflection of K in the line AB, and let M be the reflection of K in the line BC. Let E be the second point of intersection of Γ with the circumcircle of triangle BLM. Show that the lines KH, EM and BC are concurrent.

Solution. Let H_A and H_C be the reflections of H across BC and BA, respectively; it is well-known that the points H_A and H_C lie on Γ . Let E' be the second intersection of line H_AM with Γ . By construction, lines E'M and HK concur on BC, and our goal is to show that B, L, E', M are concyclic.

First, we claim that L, HC, and E' are collinear. Due to the reflections,

$$\angle \overline{LH_CB} = -\angle \overline{KHB} = \angle \overline{MH_AB} = \angle \overline{E'H_AB} = \angle \overline{E'H_CB},$$

(the notation $\angle \overline{XYZ}$ stands for a directed angle) which proves the claim. Then

$$\angle \overline{LE'M} = \angle \overline{H_CE'H_A} = \angle \overline{H_CBH_A} = 2\angle \overline{ABC}$$

(the last equality following from reflections; verify it yourself) and

$$\angle \overline{LBM} = \angle \overline{LBK} + \angle \overline{KBM} = 2\angle \overline{ABK} + 2\angle \overline{KBC} = 2\angle \overline{ABC},$$

so B, L, E', M are concyclic. Hence E = E' and we are done.

Problem 3. Prove that every positive integer n is a sum of one or more numbers of the form $2^r 3^s$, where r and s are non-negative integers and no summand divides another (for example, 23 = 9 + 8 + 6).

Solution. We argue by contradiction. Suppose n is the smallest positive integer without a *proper representation*. Clearly, $n \ge 7$. Moreover, n is odd. Indeed, if n were even, then $\frac{n}{2}$ can be properly represented; by multiplying each of the powers in a proper representation of $\frac{n}{2}$ by 2, we get a proper representation of n.

Let k be such that $3^k \leq n < 3^{k+1}$. If $n = 3^k$ a proper representation is clear. If $n > 3^k$, then $\frac{n-3^k}{2}$ is an integer which can be represented as a desired sum. Multiply each term in a proper representation of $\frac{n-3^k}{2}$ by 2 and add a summand 3^k . We claim we get a proper representation for n.

Clearly no summand coming from the used proper representation of $\frac{n-3^k}{2}$ can divide another such summand. Also since all such summands are even they cannot divide the summand 3^k . Since $\frac{n-3^k}{2}$ is less than 3^k , no summand coming from the representation of $\frac{n-3^k}{2}$ can be divisible by 3^k .

Problem 4. If $0 < a \le b \le c \le d$, prove that

$$a^b b^c c^d d^a \ge b^a c^b d^c a^d$$

Solution. We shall use the following lemma.

Lemma. If a real function f is convex on the interval I and $x, y, z \in I$, $x \leq y \leq z$, then

$$(y-z)f(x) + (z-x)f(y) + (x-y)f(z) \le 0.$$

Proof. The inequality is obvious for x = y = z. If x < z, then there exist non-negative p, r such that p + r = 1 and y = px + rz. Then by Jensen's inequality $f(px + rz) \le pf(x) + rf(z)$, which is equivalent to the statement of the lemma. \diamond

By applying the lemma to the convex function -lnx we obtain $x^y y^z z^x \ge y^x z^y x^z$ for any $0 < x \le y \le z$. Multiplying the inequalities $a^b b^c c^a \ge b^a c^b a^c$ and $a^c c^d d^a \ge c^a d^c a^d$ we get the desired inequality. \Box

Remark. Similarly, for $0 < a_1 \le a_2 \le \cdots \le a_n$ it holds that

$$a_1^{a_2}a_2^{a_3}\cdots a_n^{a_1} \ge a_2^{a_1}a_3^{a_2}\cdots a_1^{a_n}$$