
Preparation for EMC 2024

Second Training Test for Senior Category

Solutions

Problem 1. Let n be a positive integer and x1, x2, . . . , xn are positive real
numbers. For every positive integer k we denote the sum xk1 + xk2 + · · ·+ xkn
with Sk.
a) Prove that S1 < S2 implies Sk < Sk+1, for every positive integer k.
b) For which n there exist xi, i ∈ {1, 2, . . . , n} such that S1 > S2 and
Sk < Sk+1 for every k > 2?

Solution. a) Fore every integer m and positive real number x we have

xm(x− 1)2 ≥ 0 =⇒ xm+2 − xm+1 ≥ xm+1 − xm.

Adding these equations for all xi, i ∈ {1, 2, . . . , n} we get Sm+2 − Sm+1 ≥
Sm+1 − Sm. This generalizes to

Sk+2 − Sk+1 ≥ Sk+1 − Sk ≥ Sk − Sk−1 ≥ · · · ≥ S3 − S2 ≥ S2 − S1 > 0,

which is the required claim.
b) Since for 0 < x < 1, x > x2 > x3 > . . . holds, this claim can’t be true
for n = 1. Let n > 1. From a) we can conclude that it is enough to find
numbers for which S1 > S2 and S2 < S3. Besides that we will need some
of the numbers to be less than 1 (for x > 1, xk > xk−1 implies Sk+1 > Sk).
Let x1 = t, x2 = 1

2 , and x3 = · · · = xn = 1. We have S1 = t + n − 2 + 1
2 ,

S2 = t2 + n− 2 + 1
4 , and S3 = t3 + n− 2 + 1

8 . Hence we need real number t
such that t2 − t < 1

4 and t3 − t2 > 1
8 . One such number is t = 6

5 , since

t2 − t =
36− 30

25
=

6

25
<

1

4
, and

t3 − t2 =
36(6− 5)

125
=

36

125
>

1

8
.

Hence the claim is true for every n ≥ 2.



Problem 2. Let S be a square of side 9. Inside it there are 6 convex
polygons, each with area 16. Prove that at least two of the polygons have
intersection polygon (polygon that is inside both of them), that have area
grater than 1. Is the claim still true without the convexity condition?

Solution. Let us suppose that there are 6 polygons, P1, P1, P3, P4, P5, and
P6, each of area 16, such that no two of them have intersection with area
greater than 1. Using the inclusion/exclusion principle we get:

81 = 92 ≥ area(P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6) ≥
6∑

i=1

area(Pi)−
5∑

i=1

6∑
j=i+1

area(Pi ∩ Pj) ≥ 6 · 16− 15 · 1 = 81.

This proves that for i ̸= j, area(Pi ∩ Pj) = 1 and for i ̸= j ̸= k ̸= i,
area(Pi ∩ Pj ∩ Pk) = 0.
For Pij = Pi ∩Pj we have two cases for positioning of P1, P2, and P3 shown
bellow with middle ”triangle” inside - left, and without - right (the polygons
need not be exactly as in the picture).

However we can always chose them to be like in the picture in the left (just
change P1 with a polygon that has a point in the lower part of P1 which
will imply that P12, P13 or both will be inside the ”triangle” in the middle).
We furthermore chose them such that the middle ”triangle” have maximal
area, which implies that the other three polygons pass through the middle
”triangle” (otherwise we can use this polygon and increase the area).
Now consider the borders of P1, P2, and P3 that form the middle ”triangle”
(in solid line). Each of them has to be covered by the other three polygons.
Furthermore each polygon covers a distinct segment. Since the polygons are
convex none of them can cover two segments containing different vertices of
the middle ”triangle” (common points for two of P1, P2 and P3), hence they
must be divided as in the picture. This implies that area(P3 ∩P4 ∩P5) > 0,
which is a contradiction.



On the picture above it is shown that the clam need not hold for non-convex
polygons.



Problem 3. For which positive integers n there exist integer m such that
7n | (5m + 3m − 1)?

Solution. We will prove that m = 7n−1 satisfies the divisibility relation.
First we prove 7k | 37k−1

+ 47
k−1

. This is obviously true for k = 1 (7 | 31+41).
If this is true for k = n, then for k = n+ 1 and s = 7n−1 we have

(3s)7 + (4s)7 = (3s + 4s)((36)s + (35(−4))s+

(34(−4)2)s + (33(−4)3)s + (32(−4)4)s + (3(−4)5)s + ((−4)6)s),

which is divisible by 7n+1, since 7n | 3s + 4s, −4 ≡ 3 (mod 7), and we have
seven congruent numbers modulo 7 in the right bracket.
Similarly 7k | 57k−1

+ 27
k−1

, since

(5s)7 + (2s)7 = (5s + 2s)((56)s + (55(−2))s+

(54(−2)2)s + (53(−2)3)s + (52(−2)4)s + (5(−2)5)s + ((−2)6)s).

Now we have 3m + 5m − 1 ≡ −(22m + 2m + 1) (mod 7n). Multiplying by
1 − 2m, we get (1 − 2m)(3m + 5m − 1) ≡ 23m − 1 ≡ 8m − 1 (mod 7n). As
before we have 7n | 8m − 1 since

(8s)7 − 1 = (8s − 1)((86)s + (85)s + (84)s + (83)s + (82)s + 8s + 1),

implying 7n | (1 − 2m)(3m + 5m − 1). Finally 7 | 2k − 1 only when 3 | k.
Since 3 ∤ m we conclude that 7n | 3m + 5m − 1.

Comment. The conclusions 7n | am+ bm for 7 | a+ b can be devised easier
by using Lifting The Exponent Lemma.



Problem 4. Let △ABC be scalene and acute-angled with incircle with cen-
tre I that touches the sides BC, CA, and AB in D, E, and F , respectively.
Let k with centre O be the circumcircle of △ABC and the ray EF intersects
k at M . The tangents of k at A and M meet at S, and the tangents at B
and C meet at T . If IT intersects OA at J prove that ∠ASJ = ∠TSI.

Solution. Let ray FE intersect k at N , the tangents of k at A and N meet
at R, MD and ND intersect k for the second time in G and H respectively,
and the incircle of △ABC at K and L respectively, AH and AG intersect
BC at p and Q respectively and MN meets BC at V .

Since AD, BE and CF are concurrent, −1 = (V,D;B,C)
N
= (M,H;B,C),

hence H lies on MT . And by reason of symmetry G lies on NT . Also
−1 = (AM,AH;AB,AC) = (AM,AH;AE,AF ) implies that AH is polar
line of M in respect to the incircle, hence KP is tangent to the incircle



(M − K − D is polar line of P ). And similarly LQ is also tangent to the
incircle.
If KP meets AB at X, and LQ meets BC at Y , then M , X, and C are
collinear (they are on the polar line of the intersection of FK and ED) and
N , Y , and B are collinear (they are on the polar line of the intersection of
EL and FD).
Applying Pascal theorem on BHCMBA we conclude that X, P , and T are
collinear, and similarly Y , Q, and T are collinear. Pints S, K, and T lie on
the polar line of the intersection of AM and BC with respect to k. Hence,
we conclude that TS is tangent to the incircle at K, and similarly TR is
tangent to the incircle at L.
Let TS meet MN at Z and AK meets the incircle for the second time at
K ′. Since MS, SR, and RN are tangent to k we have (U,A;S,R) = −1 =
(ZK ′, ZK;ZA,ZE), implying that Z, K ′, and R are collinear and lie on
the tangent of the incircle at K ′. Similarly if TR meet MN at W and AL
meets the incircle for the second time at L′, the line W − L′ − S is tangent
to the incircle at L′.
If T ′ is the intersection of ZR and WS, then using (U,A;S,R) = −1 we
conclude that A, T , and T ′ are collinear. Consider the pedal circle of I in
△TSR passing through K, L and I ′ - the feet of the altitude form I on RS.
We have

∠KAL = ∠KAT + ∠TAL = ∠K ′KS − ∠ATK + ∠RLL′ − ∠LTA =

1

2
(∠K ′ZS − ∠LTK) +

1

2
(∠RWL′ − ∠LTK) =

1

2
∠ZRL+

1

2
∠KSW =

∠KSI + ∠IRL = ∠KI ′I + ∠II ′L = ∠KI ′L,

implying that A lies on the petal circle. Since AO ⊥ RS, the isogonal
conjugate of I lies on AO and since TI is the angle bisector, the isogonal
conjugate is J . Hence ∠ASJ = ∠TSI.


