
Preparation for EMC 2024

First Training Test for Senior Category

Solutions

Problem 1. We are given a set of 2024 distinct points in the plane, no
three collinear. Four points from this set are vertices of a unit square; the
other 2020 points lie inside this square. Prove that there exist three distinct
points X,Y, Z in this set such that P△XY Z ≤ 1

4042 .

Solution. We prove by induction on n that, given n ≥ 1 points inside the
square (with no three collinear), the square may be partitioned into 2n+ 2
triangles, where each vertex of these triangles is either one of the n points
or one of the vertices of the square. For the base case n = 1, because the
square is convex, we may partition the square into four triangles by drawing
line segments from the interior point to the vertices of the square.

For the induction step, assume that the claim holds for some n ≥ 1.
Then for n + 1 points, take n of the points and partition the square into
2n+2 triangles whose vertices are either vertices of the square or are among
the n chosen points. Call the remaining point P . Because no three of the
points in the set are collinear, P lies inside one of the 2n + 2 partitioned
triangles, say inside △ABC. We may further divide this triangle into the
triangles APB, BPC and CPA. This yields a partition of the square into
2(n+ 1) + 2 = 2n+ 4, completing the induction.

For the special case n = 2020, we may divide the square into 4042
triangles with total area 1. One of those triangles has area at most 1

4042 , as
desired.



Problem 2. Find all f : {1, 2, 3, . . .} → {1, 2, 3, . . .} such that for every
m,n ∈ {1, 2, 3, . . .} holds

f(m) + f(n) | m+ n .

Solution. We will prove by strong induction that f(n) = n. Letting m =
n = 1, we obtain that 2f(1) | 2, hence f(1) | 1 ⇒ f(1) = 1. This establishes
the base case. Assume now that the result holds for all positive integers
which are less than some n > 1. By Chebyshev’s theorem, we know that
there exists a prime number between n and 2n, so there exists m < n
such that m + n = p is prime. Since f(m) + f(n) divides p, we have that
f(m)+f(n) is either 1 or p. But f(m)+f(n) ≥ 1+1 = 2, so it cannot be 1.
Therefore f(m)+f(n) = p. Since f(m) = m from the induction hypothesis,
we obtain f(n) = p−m = n. This completes our proof.



Problem 3. Let a0, a1, a2, . . . be a strictly increasing sequence of non-
negative integers such that every non-negative integer can be expressed
uniquely in the form ai + 2aj + 4ak, where i, j and k are not necessarily
distinct. Determine all possible values of a2024.

Solution. First we will prove that this sequence is unique, showing that an
is uniquely determined, by induction on n. Clearly a0 = 0, so the base case
holds. Now, suppose we have proven that

{a0, a1, . . .} ∩ {1, 2, . . . , n}

is uniquely determined. If n+1 can be written as x+2y+4z where x, y, z ∈
{a0, a1, . . .} ∩ {1, 2, . . . , n} then it cannot belong to the sequence due to the
uniqueness of this representation, while if not, it definitely must because
such a representation should exist. So, whether n+ 1 belongs or not to the
sequence depends only on the terms of the sequence smaller that n+ 1. As
these terms are uniquely determined, the induction step is done.

Therefore, it suffices to find an example of such a sequence. The expres-
sion ai+2aj +4ak is strongly related to base 8 expansion and with this idea
in mind, we easily find that the sequence consists of those non-negative inte-
gers whose digits in base 8 are only 0 or 1. Then we check that an is obtained
by writing n in base 2 and reading the result in base 8. In particular,

2024 = 210 + 29 + 28 + 27 + 26 + 25 + 23

so

a2024 = 810 + 89 + 88 + 87 + 86 + 85 + 83

= 1, 227, 129, 344 .



Problem 4. Each of the numbers 1, 2, . . . , N is colored black or white. We
are allowed to simultaneously change the colors of any three numbers in
arithmetic progression. For which numbers N can we always make all the
numbers white?

Solution. We clearly cannot always make all the numbers white if N = 1.
Suppose that 2 ≤ N ≤ 7, and suppose that only the number 2 is colored
black. Call a number from {1, . . . , N} heavy if it is not congruent to 1
modulo 3. Let X be the number of heavy numbers which are black, where
X changes as we change the colors. Suppose we change the colors of the
numbers in {a− d, a, a+ d}, where 1 ≤ a− d < a < a+ d ≤ N . If d is not
divisible by 3, then a − d, a, a + d are all distinct modulo 3, so exactly two
of them are heavy. If instead d is divisible by 3, then a − d, a, a + d must
equal 1, 4, 7, none of which are heavy. In either case, changing the colors of
these three numbers changes the color of an even number of heavy numbers.
Hence X is always an odd number, and we cannot make all the numbers
white.

Next we show that for N ≥ 8, we can always make all the numbers white.
To do this, it suffices to show that we can invert the color of any single
number n. We prove this by strong induction. If n ∈ {1, 2}, then we can
invert the color of n by changing the colors of the numbers in {n, n+3, n+6},
{n + 3, n + 4, n + 5} and {n + 4, n + 5, n + 6}. Now assuming that we can
invert the color of n − 2 and n − 1 (where 3 ≤ n ≤ N), we can invert the
color of n by first inverting the colors of n− 2 and n− 1 then changing the
colors of the numbers in {n− 2, n− 1, n}.
Hence, we can always make all the numbers white if and only if N ≥ 8.


