
Preparation for EMC 2023

First Training Test for Senior Category

Solutions

Problem 1. The sequence a1, a2, a3, . . . is defined by: a1 = 1 and an+1 =
a2n + 1 for n ≥ 1. Prove that there exists a positive integer n such that an
has a prime factor with more than 2023 digits.

Solution. Call a prime p good if there exists a positive integer n such that
an is divisible by p. It suffices to show that there are infinitely many good
primes.

For a good prime p, let d be the smallest positive integer such that ad ≡ 0
(mod p). Define a0 = 0. An easy induction yields ai ≡ ai+d (mod p) for all
integers i ≥ 0. So an ≡ 0 (mod p) whenever d | n.

Suppose, for the sake of contradiction, that there are only finitely many
good primes p1, p2, . . . , pk and let di denote the smallest positive integer such
that adi ≡ 0 (mod pi). From the preceding paragraph we know that an ≡ 0
(mod pi) whenever di | n. Choose n = d1d2 · · · dk. Hence an is divisible by
p1p2 · · · pk. Let p be a prime factor of an+1. Hence p is good and so is in the
list p1, p2, . . . , pk. But an+1 = a2n + 1 and p | an+1 and p | an. Thus p | 1,
which is a contradiction.

Problem 2. Each square in a 2023 × 2023 grid of unit squares can be
colored either red or blue. We can adjust the colors of the squares with a
sequence of moves. In each move, we choose a rectangle composed of unit
squares, and change all of its red squares to blue and all of its blue squares
to red. A monochrome path in the grid is a sequence of distinct unit squares
of the same color, such that each shares an edge with the next. A coloring
of the grid is called tree-like if, for any two unit squares S and T of the same
color, there is a unique monochrome path whose first square is S and last
square is T.

Determine the minimum number of moves required to reach a tree-like
coloring when starting from a coloring in which all unit squares are red.



Solution. The answer for an n× n chessboard is [n2 ]. So for n = 2023, the
answer is 1011.

We first show that at least [n2 ] moves are needed. Suppose that we
achieve the required state after k ≤ [n2 ]− 1 moves. In the chessboard there
are n− 1 interior horizontal lines and n− 1 interior vertical lines (excluding
the perimeter of the chessboard). In each move, the perimeter of the chosen
rectangle is made up of two vertical and two horizontal lines. Since 2k <
n−1, after k moves, at least one vertical line, say v, and one horizontal line,
say h, of the chessboard do not coincide with the perimeters of any of the k
chosen rectangles. Hence the four unit squares adjacent to the intersection
point of v and h have the same color after k moves. This is a contradiction
since a monochrome 2× 2 square cannot be part of a tree-like coloring.

It remains to show that [n2 ] moves is sufficient. Suppose the chessboard is
on the Cartesian plane, described by the region 0 ≤ x, y ≤ n. The required
state can be achieved by the following moves.

• For the first move, choose the rectangle defined by 1 ≤ x ≤ n and
1 ≤ y ≤ [n2 ].

• For the ith move where i = 2, 3, . . . , [n2 ], choose the rectangle defined
by 1 ≤ x ≤ n− 1 and 2i− 2 ≤ y ≤ 2i− 1.

The following diagram shows the final configuration for the n = 9 case.

It is easy to check that, after [n2 ] moves, the grid indeed has a tree-like
coloring.



Problem 3. Let △ABC be a triangle with incenter I. Suppose that D is a

variable point on the circumcircle of △ABC, on the arc
⌢
AB that does not

contain C. Let E be a point on the line segment BC such that ∠ADI =
∠IEC. Prove that, as D varies, the line DE passes through a fixed point.

Solution. Let AI meet the circumcircle of ABC again at M . We claim
M is the fixed point. Let E′ be the intersection of DM and BC. We
will show that ∠ADI = ∠IE′C, which implies E = E′ since ∠IEC varies
monotonically as E varies along BC.

First, note that MB = MC = MI. Certainly MB = MC holds since

arcs
⌢

MB and
⌢

MC subtend equal angles at the circumference. The equality
MB = MI follows from

∠MBI = ∠MBC+∠CBI = ∠MAC+∠IBA = ∠MAB+∠IBA = ∠MIB.

Next, let AM intersect BC at N . Since ∠CBM = ∠MAB = ∠MDB,
we have the similarities △MBE′ △MDB and △MBN △MAB. These
imply the following length conditions:

MI2 = MB2 = MD ·ME′ = MA ·MN.

The conditionMI2 = MD·ME′ implies that△MIE′ △MDI, while the
condition MD ·ME′ = MA ·MN implies that △MNE′ △MDA. Finally,
the proof can be completed by noting

∠ADI = ∠ADM − ∠IDM = ∠MNE′ − ∠MIE′ = ∠IE′C .

Remark. The similar triangles which allowed the conversions between angle
and length conditions can be replaced by power of point arguments, or an
inversion with center M and radius MB = MC = MI.



Problem 4. Prove that for each integer k satisfying 2 ≤ k ≤ 100, there are
positive integers b2, b3, . . . , b101 such that

b22 + b33 + · · ·+ bkk = bk+1
k+1 + bk+2

k+2 + · · ·+ b101101.

Solution. Consider the equation

a22 + · · ·+ akk − ak+1
k+1 − · · · − a100100 = L .

First of all, choose a2, . . . , a100 arbitrarily so that L is positive (e.g., this
can be achieved by making a2 very big). Since 101 is coprime to 100!, there
exist positive integers c and d such that 100!c + 1 = 101d (e.g., by setting
c to be the inverse of −100! in modulo 101). In fact, by Wilson’s theorem,
100! + 1 is divisible by 101, so c = 1 works.

Multiplying both sides by L100!c, we have

(a2L
100!c

2 )2+· · ·+(akL
100!c

k )k−(ak+1L
100!c
k+1 )k+1−· · ·−(a100L

100!c
100 )100 = (Ld)101 .

Therefore, setting bi = aiL
100!c

i for 2 ≤ i ≤ 100 and b101 = Ld would satisfy
the required condition.


