Preparation for EMC 2023

Fifth Training Test for Senior Category

Solutions

Problem 1. Determine all functions $f : \mathbb{N} \to \mathbb{N}$ that satisfy the inequality

$$f(n+1) > f(f(n))$$

for all $n \in \mathbb{N} = \{1, 2, 3, \ldots\}.$

Solution. The only solution is the identity function. We break the argument into several steps.

Claim 1. $f(1) = \min_{n \in \mathbb{N}} f(n)$. Namely, let m be the smallest natural number such that $f(m) = \min_{n \in \mathbb{N}} f(n)$. It cannot be that $m \ge 2$ for otherwise the inequality f(m) > f(f(m-1)) contradicts the choice of m. The claim follows. Moreover, we have shown that n > 1 implies f(n) > f(1).

Actually, the same line of reasoning can yield the following.

Claim 2. f is strictly increasing. Let us prove by induction on n that f(x) > f(n) whenever x > n. The case n = 1 is the content of Claim 1. Suppose that $n \ge 2$ and that x > k implies f(x) > f(k) for all k < n. It follows that $f(x) \ge n$ holds for all $x \ge n$. Let $f(m) = \min_{x\ge n} f(x)$. If we suppose that m > n, then $m - 1 \ge n$ and consequently $f(m - 1) \ge n$. But in this case the inequality f(m) > f(f(m - 1)) contradicts the minimality property of m. The inductive proof is thus completed.

Claim 3. f(n) = n for all natural numbers n. Since f is strictly increasing, clearly $f(n) \ge n$. Moreover, f(n+1) > f(f(n)) implies that n+1 > f(n). Hence f(n) = n.

It is readily seen that the identity function meets all requirements. \Box

Problem 2. There are 2^n words of length n over the alphabet $\{0, 1\}$. Prove that the following algorithm generates the sequence $w_0, w_1, \ldots, w_{2^n-1}$ of all these words such that any two consecutive words differ in exactly one digit.

- (1) $w_0 = 00 \dots 0$ (*n* zeros).
- (2) Suppose $w_{m-1} = a_1 a_2 \dots a_n$, $a_i \in \{0, 1\}$. Let e(m) be the exponent of 2 in the representation of m as a product of primes, and let j = 1 + e(m). Replace the digit a_j in w_{m-1} by $1 - a_j$. The obtained word is w_m .

Solution. We prove by induction on n that independently of the word w_0 , the given algorithm generates all words of length n. This is clear for n = 1. Suppose now the statement is true for n - 1, and that we are given a word $w_0 = c_1 c_2 \ldots c_n$ of length n. Obviously, the words $w_0, w_1, \ldots, w_{2^{n-1}-1}$ all have the nth digit c_n , and by the inductive hypothesis these are all words whose nth digit is c_n . Similarly, by the inductive hypothesis $w_{2^{n-1}}, \ldots, w_{2^n-1}$ are all words whose nth digit is $1 - c_n$, and the induction is complete.

Problem 3. Let P be a point inside $\triangle ABC$ such that

$$\angle APB - \angle C = \angle APC - \angle B.$$

Let D, E be the incenters of $\triangle APB$, $\triangle APC$ respectively. Show that AP, BD, and CE meet in a point.

Solution. Let X, Y, Z respectively be the feet of the perpendiculars from P to BC, CA, AB. Examining the cyclic quadrilaterals AZPY, BXPZ, CYPX, one can easily see that $\angle XZY = \angle APB - \angle C$ and $XY = PC \sin \angle C$. The first relation gives that $\triangle XYZ$ is isosceles with XY = XZ, so from the second relation $PB \sin \angle B = PC \sin \angle C$. Hence AB/PB = AC/PC. This implies that the bisectors BD and CD of $\angle ABP$ and $\angle ACP$ divide the segment AP in equal ratios; i.e., they concur with AP.

Problem 4. Show that the number of 0-1 strings of length n with exactly m zeros that are followed immediately by ones equals

$$\binom{n+1}{2m+1}.$$

Solution. Given a 0-1 string (a_1, a_2, \ldots, a_n) , enlarge it to a string of length n+2 by adding $a_0 = 1$ and $a_{n+1} = 0$. Then associate with the enlarged string a corresponding one $(b_l, b_2, \ldots, b_{n+l})$ by setting $b_i = 0$ if $a_i = a_{i-1}$ and $b_i = 1$ if $a_i \neq a_{i-1}$. It is easy to check that the mapping just defined is a bijection from the set of 0-1 strings (a_1, a_2, \ldots, a_n) that have exactly

m zeros which are followed immediately by ones to the set of 0-1 strings $(b_1, b_2, \ldots, b_{n+1})$ that have 2m+1 ones. There are $\binom{n+1}{2m+1}$ strings in the latter set, so the proof is complete.