
Preparation for EMC 2023

Fourth Training Test for Senior Category

Solutions

Problem 1. Ninety-one white pawns are placed on a 10 × 10 chessboard.
Misha repaints these pawns black one at a time and puts down each repainted
pawn on an empty square of the board. Prove that eventually two pawns of
different colors will occupy two squares that have a common side.

Solution. Arguing by contradiction, suppose Misha can act so that two
pawns of the same color never appear in adjacent squares. At any time
there exists a row and a column completely filled with pawns, which, by
our supposition, are of the same color; i.e., during the whole process of
repainting there is a monochromatic cross consisting of 19 pawns. We know
that at the very beginning this cross is all white and in the end it must be
all black. However, this means that eventually the repainting of some single
pawn will result in the appearance of the black cross on the board just after
a white cross has been present. This is clearly impossible, because any two
crosses on the board have at least two common squares.

Problem 2. Let A, B, and C be noncollinear points. Prove that there is a
unique point X in the plane of ABC such that

XA2 +XB2 +AB2 = XB2 +XC2 +BC2 = XC2 +XA2 + CA2 .

Solution. Let A′, B′, C ′ be the points symmetric to A,B,C with respect
to the midpoints of BC,CA,AB respectively. From the condition on X we
have

XB2 −XC2 = AC2 −AB2 = A′B2 −A′C2 ,

and hence X must lie on the line through A′ perpendicular to BC. Similarly,
X lies on the line through B′ perpendicular to CA. It follows that there is a
unique position for X, namely the orthocenter of △A′B′C ′. It easily follows
that this point X satisfies the original equations.



Problem 3. Let a and b be nonnegative integers such that ab ≥ c2, where
c is an integer. Prove that there exists a natural number n and integers
x1, x2, . . . , xn, y1, y2, . . . , yn such that

n∑
i=1

x2i = a,
n∑

i=1

y2i = b, and
n∑

i=1

xiyi = c .

Solution. We may assume c ≥ 0 (otherwise, we may simply put −yi in
the place of yi). Also, we may assume a ≥ b. If b ≥ c, it is enough to take
n = a+ b− c, x1 = · · · = xa = 1, y1 = · · · = yc = ya+1 = · · · = ya+b−c = 1,
and the other xi’s and yi’s equal to 0, so we need only consider the case
a > c > b.

We proceed to prove the statement of the problem by induction on a+b.
The case a + b = 1 is trivial. Assume that the statement is true when
a + b ≤ N , and let a + b = N + 1. The triple (a + b − 2c, b, c − b) satisfies
the condition, since (a + b − 2c)b − (c − b)2 = ab − c2; so by the induction
hypothesis there are n-tuples (xi)

n
i=1 and (yi)

n
i=1 with the wanted property.

It is easy to verify that (xi+yi)
n
i=1 and (yi)

n
i=1 give a solution for (a, b, c).

Problem 4. Let S(x) be the sum of digits of positive integer x in its decimal
representation. Find the smallest value of S(1998n) for positive integer n.

Solution. We prove the inequality S(1998n) ≥ 27, with the bound being
sharp (e.g., S(1998)=1+9+9+8=27). The trick is to note that

1998n+ 2n = 2000n and S(2n) = S(2000n) ,

the latter because 2000n = 2n · 1000. We combine these with the following
easy observation: if x and y are any positive integers, then

S(x+ y) = S(x) + S(y)− 9 · t(x, y) ,

where t(x, y) denotes the number of ‘transfers’ to a higher place value when
summing the corresponding (i.e., equally place valued) digits of x and y (see
the remark below); e.g., t(1988, 2) = 1 whereas t(1998, 2) = 3. Plugging
x = 1998n and y = 2n, we conclude that S(1998n) = 9 · t(1998n, 2n). So we
are left with showing that t(1998n, 2n) ≥ 3. Now, in view of the equalities
2000n = 2n·1000 and 1998n+2n = 2000n, it must be that S(1998n, 2n) ≥ 3
always holds true.



Remark. In the decimal system, every number is written with the 10 digits

0, 1, 2, 3, . . . , 9 ,

and the value of each digit depends on its location. The right most digits are
the ones, the second digit from the right are the tens, the third digit from
the right are the hundreds, the fourth digit from the right are the thousands
and so on. When reading a number we multiply the right most digit by
1 = 100, the second digit from the right by 10 = 101, the third digit by
100 = 102, the fourth digit form the right by 1000 = 103 and so on. We call
1, 10, 100, 1000, . . . the values of the places of the digits. The place value of
the n-th digit from the right is 10n−1.

Suggestion. Noting that 1998 = 2 · (103 − 1), generalize the statement of
the problem.


