
Preparation for EMC 2023

Third Training Test for Senior Category

Solutions

Problem 1. Let a, b, c and d be positive real numbers with a+b+c+d = 4.
Prove that
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Solution. First we prove that a
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we have:
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(a+ 2)(3a2 − 4a+ 4) ≥ 9a ⇔
3a3 + 2a2 − 4a+ 8 ≥ 9a ⇔

(3a+ 8)(a2 − 2a+ 1) ≥ 0 ⇔
(3a+ 8)(a− 1)2 ≥ 0.

Now we calculate
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proving the inequality.



Problem 2. Let Q be a point inside the convex polygon P1P2 · · ·P2024. For
each i = 1, 2, . . . , 2024, extend the line PiQ until it meets the polygon again
at a point Si. Suppose that none of the points S1, S2, . . . , S2024 is a vertex
of the polygon.

Prove that there is at least one side of the polygon that does not contain
any of the points S1, S2, . . . , S2024.

Solution. The diagonal l = P1P1013 splits the polygon into two halves.
Since Q does not lie on l (otherwise S1 = P1013 which is not permitted), it
lies strictly inside one of these halves. Without loss of generality we may
assume that Q lies inside P1P2 · · ·P1013.

Orient the original polygon so that l is horizontal and P2, . . . , P1012 and
Q lie below l. Note that 1012 edges of the polygon lie on each side of l.

Each of the rays P1013Q,P1014Q, . . . , P2024Q,P1Q intersects l. Therefore
they intersect the polygon for a second time below l. So the 1013 points
S1013, S1014, . . . , S2024, S1 all lie below l. Hence at most 1011 of the Si’s lie
above l. But 1012 edges of the polygon lie above l. So at least one of these
edges does not contain an Si, as required.

Problem 3. Let P (x) and Q(x) be polynomials with integer coefficients
such that the leading coefficient of P (x) is 1. Suppose that P (n)n divides
Q(n)n+1 for infinitely many positive integers n.

Prove that P (n) divides Q(n) for infinitely many positive integers n.

Solution. Let R(n) = Q(n)/P (n). We have (R(n))nQ(n) ∈ Z for infinitely
many integers n. If we suppose that R(n) /∈ Z, then R(n) ∈ Q\Z, so R(n) =
q
p for relatively prime integers q and p, with p ≥ 2. But then Q(n) q

n

pn ∈ Z,
which implies that pn divides Q(n), and in particular Q(n) ≥ pn ≥ 2n. But



Q is a polynomial, so there are at most finitely many n for which Q(n) ≥ 2n.
The result follows.

Problem 4. Let ABCD be a convex quadrilateral. Prove that there exists
a point P inside the quadrilateral such that

∠PAB + ∠PDC = ∠PBC + ∠PAD =

∠PCD + ∠PBA = ∠PDA+ ∠PCB =90◦
(1)

if and only if the diagonals AC and BD are perpendicular.

Solution. For a point P distinct from A, B, C and D, let circles (APD)
and (BPC) intersect again at Q (Q ≡ P if the circles are tangent). Next,
let circles (AQB) and (CQD) intersect again at R. We show that if P
lies in ABCD and satisfies (1) then AC and BD intersect at R and are
perpendicular; the converse is also true. It is convenient to use directed
angles. Let ∠(UV,XY ) denote the angle of counterclockwise rotation that
makes line UV parallel to line XY . Recall that four noncollinear points U ,
V , X and Y are concyclic if and only if ∠(UX, V X) = ∠(UY, V Y ).

The definitions of points P , Q and R imply

∠(AR,BR) = ∠(AQ,BQ) = ∠(AQ,PQ) + ∠(PQ,BQ) =

∠(AD,PD) + ∠(PC,BC),

∠(CR,DR) = ∠(CQ,DQ) = ∠(CQ,PQ) + ∠(PQ,DQ) =

∠(CB,PB) + ∠(PA,DA),

∠(BR,CR) = ∠(BR,RQ) + ∠(RQ,CR) = ∠(BA,AQ) + ∠(DQ,CD) =

∠(BA,AP ) + ∠(AP,AQ) + ∠(DQ,DP ) + ∠(DP,CD) =

∠(BA,AP ) + ∠(DP,CD).

Observe that the whole construction is reversible. One may start with
point R, define Q as the second intersection of circles (ARB) and (CRD),
and then define P as the second intersection of circles (AQD) and (BQC).
The equalities above will still hold true.



Assume in addition that P is interior to ABCD. Then

∠(AD,PD) = ∠PDA,

∠(PC,BC) = ∠PCB,

∠(CB,PB) = ∠PBC,

∠(PA,DA) = ∠PAD,

∠(BA,AP ) = ∠PAB,

∠(DP,CD) = ∠PDC.

Suppose that P lies in ABCD and satisfies (1). Then ∠(AR,BR) =
∠PDA + ∠PCB = 90◦ and similarly ∠(BR,CR) = ∠(CR,DR) = 90◦. It
follows that R is the common point of lines AC and BD, and that these
lines are perpendicular.

For the reverse implication suppose that AC and BD are perpendicu-
lar and intersect at R. We show that the point P defined by the reverse
construction (starting with R and ending with P ) lies in ABCD. This is
enough to finish the solution, because then the angle equations above will
imply (1).

One can assume that Q, the second common point of circles (ABR) and
(CDR), lies in ∠ARD. Then in fact Q lies in △ADR as ∠AQR and ∠DQR
are obtuse. Hence ∠AQD is obtuse, too, so that B and C are outside circle
(ADQ) (∠ABD and ∠ACD are acute).

Now ∠CAB + ∠CDB = ∠BQR + ∠CQR = ∠CQB implies ∠CAB <
∠CQB and ∠CDB < ∠CQB. Hence A and D are outside circle (BCQ).



In conclusion, the second common point P of circles (ADQ) and (BCQ) lies
on their arcs ADQ and BCQ.

We can assume that P lies in ∠CQD. Since

∠QPC + ∠QPD = (180◦ − ∠QBC) + (180◦ − ∠QAD =

360◦ − (∠RBC + ∠QBR)− (∠RAD − ∠QAR) =

360◦ − ∠RBC − ∠RAD.

point P lies in △CDQ, and hence in ABCD. The proof is complete.


