
Preparation for EMC 2023

Second Training Test for Senior Category

Solutions

Problem 1. Let I be the incenter of △ABC, and P be the orthogonal
projection of B onto the line AI. Let X and Y , respectively, be the points
of contact of the incircle of △ABC with the sides BC and AC. Prove that
P,X, Y are collinear.

Solution. Let α, β and γ denote the radian measures of the interior angles
CAB,ABC and BCA, respectively. Denote by Q the intersection point of
lines AI and XY . Obviously Q lies on the extension of segment AI on the
side of I, whereas, in regard to line XY , Q belongs to the ray Y X; moreover,
it is readily seen that Q is an interior point of segment XY if and only if
β > γ.

We show Q ≡ P by proving that ∠AQB = π
2 . Observe that the latter

equality is equivalent to Q ∈ (IXZ), where Z denotes the point of contact
of the incircle of △ABC with side AB and (IXZ) is the circumcircle of
△IXZ. (Because segment BI is the diameter of (IXZ).)

As tangent segments, |CX| = |CY |, which implies ∠CXY = π
2 − γ

2 .
Assume first that Q lies on the extension of segment Y X on the side of
X. Let R be the intersection point AQ ∩ BC. Then ∠ARC = π − α

2 − γ

and ∠RXQ = ∠CXY , which in turn imply that ∠RQX = β
2 = ∠IZX.

Consequently, Q ∈ (IXZ).
Assume now that Q is interior point of segment XY . Similarly to above,

∠BXZ = π
2 −

β
2 . Thus ∠Y XZ = β

2 +
γ
2 . As ∠ZAQ = α

2 , the sum ∠AQX +
∠AZX of interior angles at Q and Z in quadrilateral AQXZ equals 3π

2 .
Consequently, because ∠AZI = π

2 , the sum ∠IQX+∠IZX (of two opposite
interior angles in convex quadrilateral IQXZ) equals π. However, this is
equivalent to the desired Q ∈ (IXZ) (since Z and Q lie on opposite sides
in regard to line IX).

Remark. The content of this problem is usually referred to as Right angles
on incircle chord Lemma. It’s origin is unclear, but it has been a common
knowledge among geometers of the 19th century.



Problem 2. Cvetko and Spiro play the following game: starting with the
number 2 written on a blackboard, each player on turn changes the current
number n to a number n+ p, where p is a prime divisor of n. Cvetko goes
first and the players alternate on turn. The game is lost by the one who is
forced to write a number greater than 2 . . . 2︸ ︷︷ ︸

2023

.

Assuming perfect play, who will win the game? (Prove your answer.)

Solution. We prove that Cvetko wins the game. For argument’s sake,
suppose that Spiro can win by proper play regardless of what Cvetko does
on each of his moves. Note that Cvetko can force the line 2 → 4 → 6 →
8 → 10 → 12 at the beginning stages of the game. (As each intermediate
‘position’ from which Spiro has to play is a prime power.) Thus, if the
number 12 is written on the blackboard, then the player on turn must be in
a ‘winning position’, i.e., he can win the game with skillful play. However,
Cvetko can place himself in that position through the following line which
is once again forced for Spiro: 2 → 4 → 6 → 9 → 12. (This time Cvetko
is on turn with 12 written on the blackboard.) The obtained contradiction
proves our point.

Remark. The following reasoning validates that the concepts of ‘winning
position’ and ‘loosing position’ are well defined. In a nutshell, a simple
backtracking works. Namely, call every integer greater than 2 . . . 2︸ ︷︷ ︸

2023

a ‘winning

position’ (for the player on turn). As for a number n ≤ 2 . . . 2︸ ︷︷ ︸
2023

, it is said

to be a ‘loosing position’ (for the player on move) if every number n + p,
where p is a prime divisor of n, represents a ‘winning position’; otherwise,
n is said to be a ‘winning position’ itself. Thus, to summarize the solution,
regardless of whether 12 is winning or loosing (deciding on this is most likely
an arduous task even for a computer), the number 2 is winning because the
player on move (Cvetko) can force a line with a prescribed player on turn
and the number 12 being written on the blackboard.



Problem 3. The real numbers x1, x2, . . . , xn belong to the interval [−1, 1],
and the sum of their cubes is equal to zero. Prove that the sum x1 + x2 +
· · ·+ xn does not exceed n/3.

Solution. Note that the inequality 4x3 − 3x + 1 = (x + 1)(2x − 1)2 ≥ 0
holds true for any x ≥ −1. Therefore, we have the inequality

n∑
k=1

(4x3k − 3xk + 1) = −3

n∑
k=1

xk + n ≥ 0 ,

which implies the desired inequality

n∑
k=1

xk ≤ n/3.

Problem 4. Let a, b, n be positive integers, b > 1 and bn−1 | a. Show that
the representation of the number a in the base b contains at least n digits
different from zero.

Solution. Let s be the minimum number of nonzero digits that can appear
in the b-adic representation of any number divisible by bn − 1. Among all
numbers divisible by bn−1 and having s nonzero digits in base b, we choose
the number A with the minimum sum of digits. Let A = a1b

n1 + · · ·+asb
ns ,

where 0 < ai ≤ b − 1 and n1 > n2 > · · · > ns. First, suppose that ni ≡ nj

(mod n), for a pair of distinct indices i, j. Consider the number

B = A− aib
ni − ajb

nj + (ai + aj)b
nj+kn ,

with k chosen large enough so that nj + kn > n1: this number is divisible
by bn− 1 as well. But if ai+ aj < b, then B has s− 1 digits in base b, which
is impossible; on the other hand, ai+aj ≥ b is also impossible, for otherwise
B would have sum of digits less for b− 1 than that of A (because B would
have digits 1 and ai+aj−b in the positions nj+kn+1, nj+kn). Therefore
ni ̸≡ nj if i ̸= j. Let ni ≡ ri, where ri ∈ {0, 1, . . . , n − 1} are distinct. The
number C = a1b

r1 + · · · + asb
rs also has s digits and is divisible by bn − 1.

But since C < bn, the only possibility is C = bn − 1 which has exactly n
digits in base b. It follows that s = n.


