Preparation for EMC 2023

Fifth Training Test for Senior Category

10th December 2023

Problem 1. Determine all functions $f : \mathbb{N} \to \mathbb{N}$ that satisfy the inequality

f(n+1) > f(f(n))

for all $n \in \mathbb{N} = \{1, 2, 3, \ldots\}.$

Problem 2. There are 2^n words of length n over the alphabet $\{0, 1\}$. Prove that the following algorithm generates the sequence $w_0, w_1, \ldots, w_{2^n-1}$ of all these words such that any two consecutive words differ in exactly one digit.

- (1) $w_0 = 00 \dots 0$ (*n* zeros).
- (2) Suppose $w_{m-1} = a_1 a_2 \dots a_n$, $a_i \in \{0, 1\}$. Let e(m) be the exponent of 2 in the representation of m as a product of primes, and let j = 1 + e(m). Replace the digit a_j in the word w_{m-1} by $1 a_j$. The obtained word is w_m .

Problem 3. Let P be a point inside $\triangle ABC$ such that

$$\angle APB - \angle C = \angle APC - \angle B.$$

Let D, E be the incenters of $\triangle APB$, $\triangle APC$ respectively. Show that AP, BD, and CE meet in a point.

Problem 4. Show that the number of 0-1 strings of length n with exactly m zeros that are followed immediately by ones equals

$$\binom{n+1}{2m+1}.$$

Allotted time: 4 hours.