
Preparation for EMC 2023

First Training Test for Junior Category

Solutions

Problem 1. Let a and b be positive numbers. Prove that
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Problem 2. Find all positive integers n such that 2n + 7n is a perfect
square.

Solution. Since 21 + 71 = 9 = 32, n = 1 is a solution. We show it is the
only solution.
For n > 1, we have

2n ≡ 0 (mod 4) .

We also have
7n ≡ (−1)n (mod 4) .



Since all perfect squares are either congruent to 0 or 1 modulo 4, the sum
2n + 7n cannot be a perfect square if n is odd and greater than 1. So write
n = 2m, where m is a positive integer. We would like to show that 2n + 7n

cannot be a perfect square. Considering this expression modulo 5, we have

2n + 7n = 4m + 49m ≡ 2 · (−1)m (mod 5) .

Therefore, 2n + 7n is congruent to 2 or 3 modulo 5. On the other hand, all
perfect squares are congruent to 0, 1 or 4 modulo 5. Therefore, n = 1 is
indeed the only solution to the problem.

Problem 3. Amy and Bec play the following game. Initially, there are
three piles, each containing 2020 stones. The players take turns to make a
move, with Amy going first. Each move consists of choosing one of the piles
available, removing the unchosen pile(s) from the game, and then dividing
the chosen pile into 2 or 3 non-empty piles. A player loses the game if they
are unable to make a move.
Prove that Bec can always win the game, no matter how Amy plays.

Solution. Call a pile perilous if the number of stones in it is one more
than a multiple of three, and safe otherwise. Ben has a winning strategy
by ensuring that he only leaves Amy perilous piles. Ben wins because the
number of stones is strictly decreasing, and eventually Amy will be left with
two or three piles each with just one stone.
To see that this is a winning strategy, we prove that Ben can always leave
Amy with only perilous piles, and that under such circumstances, Amy must
always leave Ben with at least one safe pile.
On Amy’s turn, whenever all piles are perilous it is impossible to choose one
such perilous pile and divide it into two or three perilous piles by virtue of
the fact that

1 + 1 ̸≡ 1 (mod 3) and 1 + 1 + 1 ̸≡ 1 (mod 3) .

Thus Amy must leave Ben with at least one safe pile.
On Ben’s turn, whenever one of the piles is safe, he can divide it into two
or three piles, each of which are safe, by virtue of the fact that

2 ≡ 1 + 1 (mod 3) and 0 ≡ 1 + 1 + 1 (mod 3) .



Problem 4. Let ABC be a triangle with ∠BAC < 90◦. Let k be the circle
through A that is tangent to BC at C. Let M be the midpoint of BC, and
let AM intersect k a second time at D. Finally, let BD (extended) intersect
k a second time at E. Prove that ∠BAC = ∠CAE.

Solution.

Since MC is tangent to circle k at C, then by the power of a point theorem
we have

MC2 = MD ·MA.

Since MB = MC it follows that

MB2 = MD ·MA.

Hence considering the power of M with respect to circle ADB, it follows
that MB is tangent to circle ADB atM .

In the angle chase that follows, AST is an abbreviation for the alternate
segment theorem.

∠BAC = ∠BAM + ∠MAC

= ∠MBD + ∠DAC (AST circle ADB)

= ∠CBD + ∠BCD (AST circle k)

= ∠CDE (exterior angle △BCD)

= ∠CAE (AECD cyclic) ,

which is the desired result.


