
Preparation for EMC 2023

Fourth Training Test for Junior Category

Solutions

Problem 1. Let L be the midpoint of the minor arc AC of the circumcircle
of an acute-angled triangle ABC. A point P is the projection of B to the
tangent at L to the circumcircle. Prove that P , L, and the midpoints of
sides AB, BC are concyclic.

Solution.

Let M , N , and K be the midpoints of AB, BC, and AC, respectively. Let
H be the foot of the altitude from B. Then H is also the common point of
BP and AC. It is clear that

MN ∥ AC ∥ PL,



thus MNLP is a trapezoid. It is known that MNKH is an isosceles trape-
zoid, hence

∠PHM = ∠NKL, MH = KN.

Also PH = KL. Therefore the triangles MHP and NKL are congruent,
i.e the trapezoid MNLP is isosceles, thus P , L, and the midpoints of AB
and BC are concyclic.

Problem 2. Let b ≥ 2 be an integer, and let sb(n) denote the sum of the
digits of n when it is written in base b. Show that there are infinitely many
positive integers that cannot be represented in the form n+ sb(n), where n
is a positive integer.

Solution. Define S(n) = n + sb(n), and call a number unrepresentable if
it cannot equal S(n) for a positive integer n. We claim that in the interval
(bp, bp+1] there exists an unrepresentable number, for any positive integer p.

If bp+1 is unrepresentable, then we’re done. Otherwise, it is time for our
lemma:

Lemma. Define the function f(p) to equal the number of integers x less
than bp such that S(x) ≥ bp. If bp+1 = S(y) for some y, then f(p+1) > f(p).

Proof. Let F (p) be the set of integers x less than bp such that S(x) ≥ bp.
Then for every integer in F (p), append the digit (b− 1) to the front of it to
create a valid integer in F (p+ 1). Also, notice that (b− 1) · bp ≤ y < bp+1.
Removing the digit (b− 1) from the front of y creates a number that is not
in F (p). Hence, F (p) → F (p + 1), but there exists an element of F (p + 1)
not corresponding with F (p), so f(p+ 1) > f(p).

Note that our lemma combined with the Pigeonhole Principle essentially
proves the claim. Therefore, because there are infinitely many intervals
containing an unrepresentable number, there are infinitely many unrepre-
sentable numbers.

Problem 3. Find all pairs of primes (p, q) for which p − q and pq − q are
both perfect squares.

Solution. We first consider the case where one of p, q is even. If p = 2,
p − q = 0 and pq − q = 2 which doesn’t satisfy the problem restraints. If
q = 2, we can set p− 2 = x2 and 2p− 2 = y2 giving us

p = y2 − x2 = (y + x)(y − x).



This forces y − x = 1 so

p = 2x+ 1 =⇒ 2x+ 1 = x2 + 2 =⇒ x = 1

giving us the solution (p, q) = (3, 2).
Now assume that p, q are both odd primes. Set p−q = x2 and pq−q = y2

so
(pq − q)− (p− q) = y2 − x2 =⇒ p(q − 1) = (y + x)(y − x)

Since y + x > y − x, p|(x+ y). Note that q − 1 is an even integer and since
y + x and y − x have the same parity, they both must be even. Therefore,
x+ y = pk for some positive even integer k. On the other hand,

p > p− q = x2 =⇒ p > x and p2 − p > pq − q = y2 =⇒ p > y.

Therefore, 2p > x+ y so x+ y = p, giving us a contradiction.
Therefore, the only solution to this problem is (p, q) = (3, 2).

Problem 4. Let a, b and c be positive real numbers such that abc = 1.
Prove that
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Solution. Denote a = x
y , b =

y
z , c =

z
x . Then
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where the last inequality follows from the AM-GM inequality
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If we do the same estimation also for the two other terms of the original
inequality then we get
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Equality holds only if y2 = x2 + z2, z2 = x2 + y2 and x2 = y2 + z2 what is
impossible.


